Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Structure ; 32(2): 177-187.e5, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070499

RESUMO

Fused in sarcoma (FUS) is an archetypal phase separating protein asymmetrically divided into a low complexity domain (LCD) and an RNA binding domain (RBD). Here, we explore how the two domains contribute to RNA-dependent phase separation, RNA recognition, and multivalent complex formation. We find that RBD drives RNA-dependent phase separation but forms large and irregularly shaped droplets that are rescued by LCD in trans. Electrophoretic mobility shift assay (EMSA) and single-molecule fluorescence assays reveal that, while both LCD and RBD bind RNA, RBD drives RNA engagement and multivalent complex formation. While RBD alone exhibits delayed RNA recognition and a less dynamic RNP complex compared to full-length FUS, LCD in trans rescues full-length FUS activity. Likewise, cell-based data show RBD forms nucleolar condensates while LCD in trans rescues the diffuse nucleoplasm localization of full-length FUS. Our results point to a regulatory role of LCD in tuning the RNP interaction and buffering phase separation.


Assuntos
Separação de Fases , Motivos de Ligação ao RNA , Proteína FUS de Ligação a RNA , RNA , RNA/química , Proteína FUS de Ligação a RNA/química , Humanos
2.
bioRxiv ; 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37873183

RESUMO

Plate-based quantitative metabolic flux analysis has emerged as the central technology to examine cellular metabolism and mitochondrial bioenergetics. However, accurate interpretation of metabolic activity between different experimental conditions in multi-well microplates requires data normalization based on in situ cell counts. Here, we describe FluxNorm, a platform-independent semi-automated computational workflow, validated for three different cell types, to normalize cell density for accurate assessment of cellular bioenergetics.

3.
iScience ; 26(4): 106537, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37123224

RESUMO

Fused in sarcoma (FUS) is a nuclear RNA-binding protein. Mutations in FUS lead to the mislocalization of FUS from the nucleus to the cytosol and formation of pathogenic aggregates in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD), yet with unknown molecular mechanisms. Using mutant and stress conditions, we visualized FUS localization and aggregate formation in cells. We used single-molecule pull-down (SiMPull) to quantify the native oligomerization states of wildtype (WT) and mutant FUS in cells. We demonstrate that the NLS mutants exhibited the highest oligomerization (>3) followed by other FUS mutants (>2) and WT FUS which is primarily monomeric. Strikingly, the mutant FUS oligomers are extremely stable and resistant to treatment by high salt, hexanediol, RNase, and Karyopherin-ß2 and only soluble in GdnHCl and SDS. We propose that the increased oligomerization units of mutant FUS and their high stability may contribute to ALS/FTLD pathogenesis.

4.
Elife ; 72018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30052197

RESUMO

Experience-dependent expression of immediate-early gene transcription factors (IEG-TFs) can transiently change the transcriptome of active neurons and initiate persistent changes in cellular function. However, the impact of IEG-TFs on circuit connectivity and function is poorly understood. We investigate the specificity with which the IEG-TF NPAS4 governs experience-dependent changes in inhibitory synaptic input onto CA1 pyramidal neurons (PNs). We show that novel sensory experience selectively enhances somatic inhibition mediated by cholecystokinin-expressing basket cells (CCKBCs) in an NPAS4-dependent manner. NPAS4 specifically increases the number of synapses made onto PNs by individual CCKBCs without altering synaptic properties. Additionally, we find that sensory experience-driven NPAS4 expression enhances depolarization-induced suppression of inhibition (DSI), a short-term form of cannabinoid-mediated plasticity expressed at CCKBC synapses. Our results indicate that CCKBC inputs are a major target of the NPAS4-dependent transcriptional program in PNs and that NPAS4 is an important regulator of plasticity mediated by endogenous cannabinoids.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Canabinoides/farmacologia , Colecistocinina/metabolismo , Hipocampo/citologia , Inibição Neural/efeitos dos fármacos , Sinapses/metabolismo , Animais , Região CA1 Hipocampal/citologia , Diferenciação Celular/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Camundongos Endogâmicos C57BL , Parvalbuminas/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...